INNOVATIVE PLASTICS
ULTRASONIC WELDING
A SABIC COMPANY

Innovative Plastics is a strategic business unit of SABIC. Founded in 1976, SABIC is today the first public, global multinational enterprise headquartered in the Middle East. Our products range from bulk commodity chemicals to highly engineered plastics for demanding applications. We are a leading producer of polyethylene, polypropylene, glycols, methanol and fertilizers and the fourth largest polyolefin producer.

SABIC’s businesses are grouped into Chemicals, Performance Chemicals, Polymers, Innovative Plastics, Fertilizers and Metals. In Saudi Arabia, the Netherlands, Spain, the USA, India, China and Japan, our dedicated Technology & Innovation centers research ways to meet our customers’ needs with excellence.

We believe that SABIC customers deserve the full benefit of every advantage our enterprise can offer. After all, our success is defined by our customers’ success. And with more than 70 years of experience pioneering advanced engineering thermoplastics, SABIC’s Innovative Plastics business is positioned to help create new opportunities for growth and breakthrough applications.

INNOVATING FOR CUSTOMER SUCCESS

We offer expertise and experience to our customers in a variety of ways:

• Material solutions to help drive innovation and market leadership.

• Design, logistics and processing expertise to spark new ideas and better efficiencies.

• Unwavering commitment to build long-term relationships with ingenuity, trust and continuous improvement.

It’s what we strive for and work to deliver... a mutual benefit.

Excellence and nothing less.
Ultrasonic welding is one of the most common methods of assembling two thermoplastic parts. Ultrasonics provide strong, reliable bonds at very fast cycle times. A single ultrasonic welder can be used to join parts up to approximately 8” in diameter, and several welders can be combined or “ganged together” to weld larger parts.

**Diagram:**
- **Converter**
- **Booster**
- **Horn**

Output frequency (20,000 Hertz)

Mechanical vibratory energy output (20,000 Hertz)

Electrical energy input (50 to 60 Hertz)
ULTRASONIC WELDING

An ultrasonic welding system generally consists of two major components.

The first is the power supply, which converts 60 cycle electric power to high frequency (generally 20,000 cycle) electrical energy. This unit may also contain process controls for the welder.

The second unit houses the elements that convert the electrical energy to mechanical motion and apply it to the part in the proper form. The converter contains the driver and the piezoelectric elements that provide this vibrating mechanical energy.

A booster unit connected to the converter increases, decreases, or couples the vibrational amplitude from the converter to the horn. Boosters that supply from 0.5 to 2.5 times the converter output amplitude are commonly available.

The mechanical motion then is transmitted via a horn to the part. The horn is designed specifically for the parts to be assembled—delivering the proper amplitude directly to the joint area.

Only one of the mating plastic parts comes in contact with the horn. The part transmits the ultrasonic energy to the bonding area, producing a rapid, consistent weld. Both mating halves remain cool, except at the weld interface, where the energy is quickly converted to heat and plastic melt.

Optimum energy transmission and control occur when the horn is close to the bond. “Near field” welding describes the process when the horn is within 0.25” of the weld (see Figure 1). “Far field” welding, with distances greater than 0.25”, is less effective.

**FIGURE 1**
NEAR AND FAR FIELD WELDING
The key elements for successful ultrasonic welding include joint design, part design, horn configuration and fixturing.

The factors that most influence these elements are:
- resin grade
- near or far field
- surface cleanliness
- welder power
- uniform wall sections
- weld time
- single bond plane
- hold time
- simplicity of shape
- clamping force

Optimum joint designs incorporate the following:
- a small initial contact area (i.e. an energy director; see figure 2)
- uniform contact
- proper part alignment
- allowance for material flow (flash traps)
- a suitable horn contact area
- location of the joint as close as possible to the horn
- allowance for rigid fixturing of the bottom part

Acrylics boast rapid cure at room temperature with a setting time of approximately 60 to 90 seconds and full cure within 30 minutes or less. Application of heat may reduce cure times.

Energy directors in an ultrasonic joint serve to focus the energy into a line contact around the weld rather than a full surface contact. Focusing the energy into a smaller area controls the location and flow of the melt, resulting in a strong and repeatable bond. The energy director also initiates the melt much more quickly, improving cycle times.

**FIGURE 2**
**JOINT DESIGN**

**TYPICAL JOINT DIMENSIONS**

**ENERGY DIRECTOR**
- Height A = .025" (Amorphous)
  - .020" (Crystalline)
- Angle B = 75 to 90 degrees

**SHEAR JOINT**
- Lead-in C = .020"
- Depth D = .050"
- Angle E = 30 to 45 degrees
- Interference per side for part width
  - F = .008" - .012" < .750"
  - .012" - .018" .750" - 1.50"
  - .016" - .020" > 1.5"
Although ultrasonic welding is commonly used in the plastics industry, it is a complex process. It involves much common sense engineering, but requires an orderly approach to coordinating all of the available resources when a welding problem occurs. This outline provides step-by-step guidelines describing how to resolve ultrasonic welding questions and issues.
STEP 1. GET THE RIGHT PEOPLE INVOLVED

- For SABIC, the local Application Development Engineer can be the quarterback for attacking the problem.
- Involve the welder supplier (Branson, Dukane, Ultrasonic Seal, etc.). They can best verify that the machine is working properly, the proper equipment is being used, and the process variables are reasonable.
- Involve the horn and fixturing supplier (if different from the welder supplier). They can verify that the horn is working properly and that the fixturing is holding the part well without absorbing the ultrasonic energy.

STEP 2. DOCUMENT PAST HISTORY AND COMPARABLE EXPERIENCE OF THE END USER

- If the problem started with a change in resin, tooling, or part design, then there is a base line for comparison (i.e. Does the problem go away if you change back?). Even without an obvious change, you may be able to use past experience as a base line (i.e. Does the end user have a similar part using ultrasonics?).
- Because ultrasonic welding is highly dependent on both design and material, one of the best ways to document a problem is by comparisons (i.e. “We only get three quarters of the strength we had on the old part.”)

STEP 3. DOCUMENT THE ACTUAL PROBLEM

- Is melt occurring at the joint? Are both halves of the joint melting? Is the melt uniform all around the part?
- If both halves are melting, are they sticking to each other?
- If the problem is the strength of the weld, there may be a simple mechanical explanation, such as degraded material, notches (a non-welded area can be a notch), part warpage (causing an incomplete weld), etc.
- If it is difficult to verify what is happening at the joint, it may help to mold clear parts, or different color parts, to make it easier to see where the melted material is going.

STEP 4. TRY SIMPLE THINGS FIRST (“WHAT CHANGED?”)

- Does the joint design match recommendations?
- Does the part match the prints?
- Is it a far-field weld?
- Is the horn providing the proper amplitude?
- Does the welder have enough power to weld the part in that material?
- Is the joint clean, so that friction and melt are not inhibited?
- Try varying weld time and weld pressure.
- Try varying the welding amplitude by changing the booster.

STEP 5. IF THE PROBLEM PERSISTS, OR IF THE WELDABILITY OF THE MATERIAL IS QUESTIONABLE

- The welder suppliers generally have regional welding labs that can take parts, horns and fixtures to do a detailed welding study on the actual parts. State-of-the-art microprocessor controlled welders provide better control and documentation of the entire welding process.

STEP 6. AS THE FINAL OPTION, CONSIDER AND EVALUATE CHANGES

- Changing the joint design, material, or assembly method. Since these options could be time consuming and/or expensive, they should generally be considered a last resort.
CONTACT US

Americas
SABIC
1 Plastics Avenue
Pittsfield, MA 01201
USA
T +1 413 448 7110
F +1 413 448 5573

Technical Answer Center
T +1 800 845 0600

Asia Pacific
SABIC
1266 Nanjing Road (W)
Floor 16, Plaza 66
200040 Shanghai
China
T +86 21 3222 4500
F +86 21 6289 8998

Europe
SABIC
Plasticslaan 1
PO Box 117
4600 AC
Bergen op Zoom
The Netherlands
T +31 164 292911
F +31 164 292940

Technical Answer Center
T (0) 0 800 1 238 5060
T2 00 36 1 238 5060
E webinquiries@sabic-ip.com

Middle East/Africa
SABIC Corporate Headquarters
PO Box 5101
Riyadh 11422
Saudi Arabia
T +966 (0) 1 225 8000
F +966 (0) 1 225 9000

Email
productinquiries@sabic-ip.com

THE MATERIALS, PRODUCTS AND SERVICES OF SABIC INNOVATIVE PLASTICS HOLDING BV, ITS SUBSIDIARIES AND AFFILIATES (“SELLER”), ARE SOLD SUBJECT TO SELLER’S STANDARD CONDITIONS OF SALE, WHICH CAN BE FOUND AT HTTP://WWW.SABIC-IP.COM AND ARE AVAILABLE UPON REQUEST. ALTHOUGH ANY INFORMATION OR RECOMMENDATION CONTAINED HEREIN IS GIVEN IN GOOD FAITH, SELLER MAKES NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, (I) THAT THE RESULTS DESCRIBED HEREIN WILL BE OBTAINED UNDER END-USE CONDITIONS, OR (II) AS TO THE EFFECTIVENESS OR SAFETY OF ANY DESIGN INCORPORATING SELLER’S PRODUCTS, SERVICES OR RECOMMENDATIONS. EXCEPT AS PROVIDED IN SELLER’S STANDARD CONDITIONS OF SALE, SELLER SHALL NOT BE RESPONSIBLE FOR ANY LOSS RESULTING FROM ANY USE OF ITS PRODUCTS OR SERVICES DESCRIBED HEREIN. EACH USER IS RESPONSIBLE FOR MAKING ITS OWN DETERMINATION AS TO THE SUITABILITY OF SELLER’S PRODUCTS, SERVICES OR RECOMMENDATIONS FOR THE USER’S PARTICULAR USE THROUGH APPROPRIATE END-USE TESTING AND ANALYSIS. NOTHING IN ANY DOCUMENT OR ORAL STATEMENT SHALL BE DEEMED TO ALTER OR WAIVE ANY PROVISION OF SELLER’S STANDARD CONDITIONS OF SALE OR THIS DISCLAIMER, UNLESS IT IS SPECIFICALLY AGREED TO IN A WRITING SIGNED BY SELLER. NO STATEMENT BY SELLER CONCERNING A POSSIBLE USE OF ANY PRODUCT, SERVICE OR DESIGN IS INTENDED, OR SHOULD BE CONSTRUED, TO GRANT ANY LICENSE UNDER ANY PATENT OR OTHER INTELLECTUAL PROPERTY RIGHT OF SELLER OR AS A RECOMMENDATION FOR THE USE OF SUCH PRODUCT, SERVICE OR DESIGN IN A MANNER THAT INFRINGES ANY PATENT OR OTHER INTELLECTUAL PROPERTY RIGHT.

SABIC and brands marked with ™ are trademarks of SABIC or affiliates.
© 2013 Copyright by SABIC. All Rights Reserved.